
Interactive Estimation of Agent-Based Financial Markets
Models: Modularity and Learning

Ihsan Ecemis
CoalesiX

10 Fawcett Street
Cambridge, MA 02138, USA

ihsan@coalesix.com

Eric Bonabeau
Icosystem

10 Fawcett Street
Cambridge, MA 02138, USA

eric@icosystem.com

Trent Ashburn
Tiger

10 Fawcett Street
Cambridge, MA 02138, USA

thashburn@yahoo.com

ABSTRACT
Building upon the interactive inversion method introduced by
Ashburn and Bonabeau (2004), we show how to dramatically
improve the results by exploiting modularity and by letting the
computer learn user preferences.

Categories and Subject Descriptors
I.2.6 [Learning], I.2.8 [Problem Solving, Control Methods, and
Search]

General Terms
Algorithms, Economics.

Keywords
Agent-based modeling, interactive evolution.

1. INTRODUCTION
There have been a number of attempts over the last decade to
model financial markets with agent-based modeling (ABM)
[1,4,6,9,14,15,16,17,19]. In ABM, systems are modeled as
collections of autonomous decision-making entities, called agents.
Each agent individually assesses its situation and makes decisions
based upon a set of rules. Agents may execute various behaviors
appropriate for the system they represent –for example, buying or
selling. Repetitive interactions between agents are a feature of
ABM, which relies on the power of computers to explore
dynamics out of the reach of pure mathematical methods [7]. The
power of ABM lies in their ability (1) to let the modeler describe
behavior in very natural terms and (2) to capture emergent
phenomena. A financial market seems to be a natural fit for ABM.
The dynamics of the stock market results from the behavior of
many interacting agents, leading to emergent phenomena that can
be understood using a bottom-up, ABM approach.

 While ABM is useful in producing market-like
aggregate-level patterns from individual-level rules, the main
issue in financial markets ABM is calibration and validation: how

can one evaluate the quality of a model, from both a structural
perspective (how sound is the model?) and from an econometric
perspective (how well does that model reproduce the data
quantitatively?). In practice, calibration and validation of
financial markets ABM are often neglected. One reason is that the
use of purely numerical scoring methods to evaluate data fit and
guide the search for explanatory models constrains the search path
so dramatically that no good fitting model is found or the best fit
is generated by a low-plausibility model. In many situations the
fitness function for a model cannot be practically formulated
mathematically. This problem can be overcome if one can allow
more subjective factors to guide the search for “good” models,
enabling ABM users to integrate financial economics expertise
into their models.

 Boschetti & Moresi [5,24] have proposed to replace the
numerical evaluation of data fit by a subjective evaluation. A
technique originally developed to generate “interesting” images
and pieces of art [3,8,20,21,22] is used to perform model
inversion by integrating subjective knowledge into the evaluation
process. The technique (see [23] for a review) is a directed search
evolutionary algorithm which requires human input to evaluate
the fitness of a pattern (here, the fitness might be how well the
model reproduces the data qualitatively) and uses common
evolutionary operators such as mutation and crossover to breed
the individual-level rules that produced the fittest collective-level
patterns. Interactive evolutionary computation (IEC), as this
technique is known, combines computational search with human
evaluation [23].

 In this paper we present an application of IEC to
financial markets ABM inversion. One example illustrates how
IEC can be used to discover the parameters of an agent-based
model of a financial market from aggregate observations. The
user operates a visualization tool to navigate a parameter space
using selection and variation operators. Parameter values define
traders and their trading strategies which, in turn, generate a
synthetic price history. The user’s goal is to find a combination of
parameter values that can reproduce a target price history. The
experiment utilizes a target price history from a market frenzy
that occurred on the London Stock Exchange in September 2002.
IEC is used in this case to obtain a qualitative fit.

2. AGENT-BASED MODEL
A simple model of a financial market is used in both experiments.
Each model simulation includes its own order management and
clearing mechanism (an order book), traders operating trading
strategies, a market maker posting orders on the book which are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1897

matched with traders’ orders, and a price history. At the end of
each time step, after all trading and market-making, the arithmetic
mean of the best bid and best ask is appended to a simulation’s
price history.

2.1 Order book
The order book matches orders in a continuous double-sided
auction. It holds and clears both limit orders and market orders,
where clearing is the action of matching a bid with a same-priced
ask and removing these from the book. Same-priced limit orders
are matched with other limit orders or market orders. In the
process of clearing, the size (number of shares) of each matched
order is reduced by the amount of the smaller-size order. Orders
with size zero are removed from the book. Upon order
submission, the book immediately clears any and all clearable
orders. Orders are characterized as follows: (i) Bid: an offer to
buy; (ii) Ask: an offer to sell; (iii) Best bid: the highest bid; (iv)
Best ask: the lowest ask; (v) Limit order: a bid or ask at a specific
price or better; (vi) Market order: an offer to buy at the best ask or
sell at the best bid.

2.2 Traders
At each time step, traders take turns trading according to their
strategies. Traders trade once per time step, each trader submits
only market orders, and traders’ strategies (described below) are
based upon a set of initial conditions and the accumulated price
history of the stock. In each time step, after each trader trade, the
market maker trades.

 Market maker. To ensure liquidity in the market, there
is one market maker in each simulation, tightening the spread and
maintaining order depth. The spread is the difference between the
best bid and the best ask. When a trader trades, bids or asks are
often cleared from the book, which widens the spread in a
particular direction. Spread tightening is the action of the market
maker adding bids if the trader had bought, or adding asks if the
trader had sold, until the spread is a specific dollar amount. In our
experiments, the market maker separates all its orders by $1
increments, and attempts to maintain a spread of $1. Order depth
refers to the number of uniquely-priced bids and asks that the
market maintains on the book. This buffers trading and must be of
a sufficient depth to handle all trading; several hundred orders
suffice in our experiments.

Traders in this model come in four flavors:
fundamentalists, chartists, noise traders, and a whoops trader.
Each has unlimited buying power, and unlimited shorting power
(in the real world, shorting is betting that the stock is going down
in value, using borrowed stock; covering is buying back the stock
and returning it to the lender. For our purposes, shorting and
covering are simply a different kind of selling and buying,
respectively). Also, only one trade can be made per time step, per
trader.

 Fundamentalists. Fundamentalists calculate a “true
value” of the underlying stock by averaging the price history a
certain number of minutes back – a moving average of the form

∑ −

=
= lr

rx xpT
where T is the true price, p is a historical price, r is

the time of the most recently recorded historical price, and l is the
number of time steps used in the computation. The trader then

computes an upper threshold, U, and a lower threshold, L. Each is
a percentage t away (50%=0.50) from the true price:)1(tTU +=
and)1(tTL −= . Once the price action has passed through one of
the thresholds, a number of time steps must pass (greater than the
fundamentalist’s reaction time) before the fundamentalist is
“awake” and able to trade. Once this reaction time threshold has
been passed, the fundamentalist makes one trade per time step
according to the rules:

• Buy if LA ≤ and a long position is not held

• Sell if TB ≥ and a long position is held

• Short if UB ≥ and a short position is not held

• Cover if TA ≤ and a short position is held

where B is the best bid, and A is the best ask. The trader holds a
long position if he has bought, and he no long holds it if he sells;
likewise for the short side. Characteristically, a fundamentalist
appears to anchor the price history and dampen volatility.

 Chartists. Chartists’ trading is triggered by momentum
– they trade in the direction of a trend when the trend is steep
enough. The momentum M is computed: () lppM lrr −= , where
l is the number of time steps used in the calculation, pr is the most
recent historical price, and pr-l is the price l time steps before pr. A
chartist’s trading rules are:

If the number of my previous trades is less than the maximum
allowed, then:

• Buy if)1(TpM r +≥ and the trader does not hold a
long position

• Sell if 0≤M and the trader holds a short position Short
if UB ≥ and a short position is not held

• Short if)1(TpM r −≤ and the trader does not hold a
short position

• Cover if 0≥M and the trader holds a short position

where pr is the most recent historical price and T is the threshold
(5%=0.05). Buying, selling, shorting, and covering each count as
one trade. Characteristically, chartists appear to reinforce trends
and enhance both volatility and waves.

 Noise Traders. Noise traders either buy or sell with
equal probability in each time step. Noise traders are meant to
reflect the apparent randomness in the real markets and act to
move the price action around, in effect “tripping” the strategies of
the other traders.

 Whoops Trader. The whoops trader places one 10,000-
stock order to buy at the market at 10:15am which represents the
alleged trading mistake that happened on September 20, 2002 at
10:10am. While the trading mistake is reported to have occurred
at 10:10am [18], orders on the London Stock Exchange may take
many minutes before they are observed by other traders who then
may take minutes more to act on that information. Because our
synthetic traders immediately see information and react just as
quickly, the simulation time of the mistaken order is adjusted to
10:15am.

1898

Each simulation begins with the market maker quoting a best bid
at $3820, best ask at $3821. All the market maker’s orders are in
lots of 100, and each simulation is run for the duration of the real
dataset – from 9:00am to 11:30am in 1-minute increments.

3. INTERACTIVE EVOLUTION
The IEC search method employs a genetic algorithm and a
graphical user interface to facilitate the user acting as the fitness
function. A small initial population of agent based models is
generated with random parameter values. The resulting price
histories are generated by running the models, and then shown to
the human observer. The observer selects interesting patterns
according to whatever objective and subjective criteria the
observer may be using to visually compare candidates with the
target. These selections are considered the fittest individuals of
the generation. The user configures a set of operators - elitism,
mutation, and crossover – which are used to produce a new
generation of models from the user-selected “fittest” individuals
in the previous generation. The new generation is then simulated
and the resulting price histories are again presented to the
observer. This procedure is iterated until interesting patterns
emerge from the search that more closely match the target. Over
multiple generations the population may converge toward the
target.

Figure 1. User Interface.

3.1 User Interface
The user interface, shown in Figure 1, is a critical component of
the method, which depends crucially upon the user’s ability to
evaluate visualizations of the candidate solutions [23] –obviously
this method can only work if the population size is kept small and
if interesting patterns emerge after a reasonably small number of
generations. The user interface shows the price histories of each
candidate model in the left window, each overlaid on top of the
target price history. On the right are two controls panels: (1) the
main IEC control panel configures the size of the left-hand
visualization grid, toggles operators, controls the chance that a

gene is mutated, and controls the proportion of crossover versus
mutation; the evolve button produces the next generation; (2) the
second control panel controls model drawing.

3.2 Evolutionary Algorithm
Genotype representation. Each model simulation and

its price history can be considered a phenotype, generated from
the set of trading strategies and their parameters used in the
simulation (the genotype). The parameters of these strategies vary
across genotype, and it is the composition of these genotypes that
we are interactively evolving. The genotype of a model has genes
that are numbers – initially random numbers. Each number codes
for a specific aspect of the set of traders (how many of each kind
of trader, parameters of each strategy) and has bounds specific to
the aspect it codes for. For example, a gene that codes for the
number of traders might be bounded between 10 and 100. The
trading strategies of each trader are designed to make possible a
wide variety of behaviors that can potentially produce the target
pattern. The genotype of each simulation is composed of genes
that are numbers that code for what are considered random
variables – either how many of one kind of trader (the random
variable is a constant in this case) or the α ’s and β ’s for a beta
distribution. Random values drawn from the Beta distribution
serve as specific parameters to traders. In this way, only α and
β describe a distribution of values used to parameterize any
number of traders, compressing the genotype. The Beta
probability distribution has non-zero values and takes the form:

() 11)1()()()()(−− −ΓΓ+Γ= βαβαβα xxxp
where x is real number in the interval [0,1], p(x) is the probability
at x, and)(nΓ is Euler’s gamma function. We chose the beta
distribution for our purposes because it is a bounded distribution
that can take many shapes, it is nicely parameterized by just α
and β , and it is easily scaled to cover each variable’s legal
bounds. Note also that a beta distribution with 1=α and 1=β
is equivalent to a uniform distribution. Alphas and betas are
bounded between 1 and 100, and each parameter has an upper and
lower bound for values drawn from this distribution which scales
the corresponding beta distribution. Constants, α ’s, and β ’s
comprise a genotype, and the parameter values drawn from these
random variables and their bounds define the search space. The
bounds and distributions for the parameters are defined as
follows:

 Fundamentalists: # of traders is a constant between 10
and 50; Trade size, Reaction time, Moving average length and
threshold percentage are all drawn from Beta distributions within
bounds [100,500], [1,50], [20,100] and [0%,5%], respectively.

 Chartists: # of traders is a constant between 10 and 100;
Trade size, Maximum # of trades, Momentum look back and
Momentum threshold percentage are all drawn from Beta
distributions within bounds [100,1000], [1,200], [1,5] and
[0.1%,1%], respectively.

 Noise traders: # of traders is a constant between 1 and
10; Trade size is drawn from a Beta distribution within bounds
[100,200].

1899

Selection. Candidates are either selected or not, and
non-selected candidates are discarded. The user may turn on and
off each of three operators to produce next generation members -
elitism, mutation, and crossover. Elitism is applied first; then
crossover and mutation are performed on randomly chosen
selected members to produce remaining members. The number of
new members produced by crossover versus the number produced
by mutation is a proportion chosen by the user.

 Elitism. Selected candidates are copied to the new
generation.

 Mutation. The user controls the chance that each gene
is mutated - between 0% and 100%. As the mutation algorithm
iterates through each gene, a random number between 0.0 and 1.0
is chosen. If that number is less than the mutation percentage
(expressed as a decimal, 50% is 0.50), that gene is mutated to a
new value within the bounds of that variable. Mutation occurs on
each gene if rand<chance, where rand is a random number in the
interval [0,1] and chance is the user-selected chance that a gene is
mutated. New values for a given gene are chosen as follows:
vn=min+rand*(max-min), where vn is the new value, min is the
lower bound for this gene, max is the upper bound for this gene,
and rand is a random number in the interval [0,1].

 Crossover. Double-point crossover chooses crossover
points in a uniform random fashion and produces a new candidate
by recombining two parent genotypes from among the selected
candidates.

4. EXPERIMENTS AND RESULTS

4.1 Experiments
A market frenzy is a large deviation from the efficient market
hypothesis for a relatively short period time, usually triggered by
an anomalous event such as a trading error, a glitch in the trade
processing information system, a significant piece of news, etc.
Although such events are unusual, they do happen. One example
is the market frenzy that occurred on September 20, 2002 at the
London Stock Exchange and lasted for about 20 minutes and
generated losses on the order of £100M for some of the players
[2]. The trade volume (£3.2B) of this 20-minute event was larger
than the volume of an average trading day. According to [18],
“the trade activity (trades/second) was so high that some
computer systems failed to cope and prices of shares were
delayed” – probably leading to an amplification effect. The event
began at 10:10 am and within 5 minutes the FTSE100 index rose
from 3,860 to 4,060. Within another few minutes, the index fell to
3,755, before returning to a value slightly above its original level
at the end of the 20 minutes (Figure 2).
 Although Muchnik and Solomon [18] tell us that “it is
believed that the event was triggered by a huge order (£1.2B)
mistakenly submitted twice (or even three times) causing all trade
participants to try to exploit the opportunity,” the exact course of
events is not precisely known; the players don’t like to publicize
their mistakes. The hypothesis that the event was triggered by a
glitch is likely, given the return to a stable state, but according to
various private sources the glitch is actually a combination of a
trading error and an information system problem. In that context,
our formulation of the problem we wish to address is: what is the

nature of the initial trigger and what are the likely behaviors of
the different players that can generate such a deviation from the
market’s stationary behavior? Our model will assume that one
large order is being submitted, producing the necessary trigger to
push the market out of its stationary state “without affecting its
fundamental dynamical parameters”, following Muchnik and
Solomon’s [18] plausible assumption.

9 9.5 10 10.5 11 11.5
3750

3800

3850

3900

3950

4000

4050

4100

Figure 2. Top: FTSE 100 dynamics following a likely trading
mistake on September 20, 2002. Bottom: From Muchnik and
Solomon’s model [18] with a trend-dependent panic factor.

Modified from [18].

The goal of IEC here is to determine the nature of the herding
behavior that could produce the event. While Muchnik and
Solomon [18] offer an elegant first-order explanation of the
phenomenon (an oscillator model akin to that of a guitar string),
their model produces several oscillations around the stationary
level before stabilization (Figure 2), while in the real data there is
only one oscillation before stabilization. The IEC approach will
be used to design a model that produces a better qualitative fit
with the real data.

4.2 Results
It was possible to match the target price history qualitatively in an
average of 10 generations, from a variety of starting populations.
While “qualitative match” is an imprecise term, the characteristics
we attempted to match are the amplitude, period, phase, and
damping rate of the approximate wave – and of course the size,
shape, and location of the price history. We matched reasonably
well on each of these dimensions (Figure 3). The parameter
values of the best solution are:

Noise traders
Number of traders (constant) = 8

Trade size (beta distrib.): α=97.02, β=49.75

1900

Chartists

Number of traders (constant) = 27
Trade size (beta): α=12.68, β=40.16

Threshold % (beta): α=92.52, β=25.52
Look back (beta): α=93.64, β=30.77
Max trades (beta): α=41.28, β=73.28

Fundamentalists

Number of traders (constant) = 45
Trade size (beta): α=55.01, β=59.92

True price look back (beta): α=65.76, β=28.95
Percent away (beta): α=27.3, β=28.24
Reaction time (beta): α=99.35, β=83.8

Figure 3. Best solution with data to be fitted (thick curve).

It appears that chartists are responsible for the herding behavior
(wave-form of the price action) and that nearly twice as many
fundamentalists, submitting trades more than twice as big as
chartists, are needed to dampen the effect of chartists.
Fundamentalists use a roughly 60-minute moving average, have a
±2.5% response envelope, and might be considered patient in
waiting a half hour after a threshold cross before awakening. The
chartists seem to be conservative, waiting an average of 4 minutes
before assessing a trend and acting only when that trend is
relatively steep – that is, an average of 0.75% growth per time
step (-0.75% in the case of a down-trend). Chartists having a
maximum number of trades around 65 may or may not make a
difference; the number of chartists who reached their maximum
was not recorded. It might be the case that because none of the
beta distributions were very close to the edges of their possible
ranges, that reasonable bounds were chosen for the variables. The
beta distributions also seem to be quite “tight,” and we are
tempted to conclude that narrow ranges tend to be most
appropriate, but we are reminded that it is only when both α and β
are very small that a beta distribution is not tight. It must be noted
that while this best candidate appears to match that target
exceptionally well, consider that some of the match is a result of
random outcomes resulting from the noise trader and from
parameters values being drawn randomly from beta distributions.
Seeded with different random numbers, model simulations with
the same parameters produce variety although they all exhibit
similar qualitative features.

5. GA vs IEC
One of the first questions one may ask about the example
described in the previous sections is, “why can’t a straight genetic
algorithm come up with similar results in a short amount of
time?” The answer is not trivial. In fact, it is worth testing. In
order to apply a GA with an automated rather than user-defined
fitness function, one has to define one such fitness function. The
easiest and most natural one here is simply the inverse of a fitting

error function E= ()() 21

0
21∑ =

− −N
t tt apN , where pt and at represent

the model-predicted and actual price at time t, respectively. We
used a simple GA, where the probability to be selected for each
mutation or crossover operation is proportional to ()0001.01 +E .
Figure 4 shows the fittest phenotype the GA found after 50
generations (top) together with a good match found with IEC. The
error value for the fittest GA-discovered phenotype is 31.68,
which is lower than the value obtained with IEC, 38.85. However,
the phenotype discovered by the GA does not satisfy the
requirements of the experiment, namely it does not match the
amplitude and shape of the first wave and dampens so fast as to
almost not exhibit the second wave. This result is not entirely
surprising since these qualitative features were not built into the
error function E and that is why GA could not "see" them but a
human could. We repeated the experiment with GA more than 10
times with different initial conditions but could not get a good
match to the true price curve. E is not a good measure of
performance in this experiment.

Figure 4. Best solution with data to be fitted (thick curve).
Top: GA best solution. Bottom: IE best solution.

6. MODULARITY
Another interesting aspect of IEC is the fact that users using IEC
often find parts of a solution they like and end up selecting
solutions that have such interesting parts. Because they are not
given the opportunity to select only part of a solution, they have
to select an entire solution. We tested the effectiveness of a
modularity-based selection strategy. However, in the present
example, the mapping from genotype to phenotype is “indirect”,
in the sense that modules observed in the phenotype have no easy-
to-identify counterparts at the genotype level. To introduce
modularity in a way that is relevant to the user, we divided each

1901

0 10 20 30 40 50
Number of Generations

0

2

4

6

8

10

N
um

be
r

of
 D

on
e

C
as

es

IE
MIE

phenotype (basically a time series) into 5 temporal modules of
equal size. The user can select any number of modules from as
many phenotypes as he wants. Each phenotype of the next
generation is then evaluated by computing an error function Em
with respect to each module m as:

Em = ()() 21

0
21∑ = +

− −L
i iio mpL ,

where L is the length of module m, o is the offset that sets the
location of the chosen module on the phenotype, iop + is the
model-predicted price at time o+i, and mi is the model-predicted
price that the user sets through the module he picks. This error
function computes how much this phenotype conforms to this
particular module. We discard a phenotype if Em is above a
certain threshold T for all the modules at a certain location. The
user can adjust T as another way of interacting with the system.
While a too small T would make the system discard all
phenotypes generated through evolutionary operators, a big
threshold would not act as a good filter and would create
phenotypes that do not match user's module selections. We found
that T=75 worked well for this example. We tested the system
with 10 random initial conditions. Figure 5 shows the result of
this experiment in terms of the number of cases which could find
a good match after a given number of generations. It is clear that
MIE outperformed IE in this example. IE found a good match at
generations 4, 9 (twice), 10, 11, 13, 14, 15, 18, and 49 (15 +/- 12
generations) while MIE found a good match at generations 3 (3
times), 7 (3 times), 9, 10, 15, and 16 (8 +/- 4.4 generations).

Note that even though we used an analytical formula to
filter phenotypes according to module settings, we always
assumed that the true price history is unknown to the system and
we have neither computed nor used the error function with respect
to the true prices.

Figure 5. Comparison of IEC and modular IEC.

7. LEARNING USER PREFERENCES
In this section we use machine learning techniques to learn the
underlying characteristics of human evaluation in IEC. The user
evaluates the phenotypes for a number of generations (e.g., until
he/she is tired) while a supervised neural network is trained. Then

the user lets the neural network evaluate the phenotypes on his
behalf and the evolutionary algorithm evolves solutions based on
the fitness assigned by the neural network. The supervised and
predictive phases can be repeated until the user is satisfied with a
solution.
Though the idea sounds simple, there are some challenges
inherent in the approach:

• The selection and implementation details of the
machine learning technique depend on the particular
problem.

• Neural networks usually require large training sets.
Since human fatigue is the main motivation for the
approach, we should typically expect less than 100
training patterns. That is not adequate for most
networks.

• In IEC, the user evaluates a given number of
phenotypes and selects some of them based on his/her
comparison with other phenotypes presented within the
same generation. The same phenotype he selects as the
best of the first generation may be the worst of
generation 10. To deal with this relative evaluation
problem, we let the user rate each phenotype on a scale
from 0 to 10, 10 being the best solution. We also
assume that the user is more or less consistent on his
ratings, which we know is not always true as humans
may change their evaluation criteria over time.

• We assume that the user does not reach the optimal
solution during the initial supervised phase, otherwise
he does not need to proceed with the neural network.
Since the optimal solution is not in the training set, it is
unlikely that the neural network will recognize it in the
predictive phase.

In our implementation, applied to the problem described in the
previous sections, each generation consists of 12 genotypes with 2
elites surviving to the next generation. Five genotypes are created
through mutation and 5 genotypes through crossover. The
probability of a genotype to be selected for each mutation or
crossover operation is proportional to R2, where R is the user
rating between 0 and 10. A simplified version of the Radial Basis
Function network [12,13] is used. The output of the network is
given by

() ()∑ == K
j kk xgxy 0ω ,

where kω ’s are the elements of a weight vector and x is the K-
dimensional input vector. We defined the radial basis functions as
Gaussians:

() ()[]22 2exp kkkk xxg σμ−−= ,

where kμ and kσ are the center and variance of the Gaussian. In
this implementation we use an iterative learning rule to find the
centers kμ that minimize the difference between the user ratings
and the network predictions. Since we know that each dimension
is equally important for the user we fixed the weights kω at 10/K
and kσ at 0.5.

1902

0 10 20 30 40 50
Number of Generations

5

6

7

8

9

10

A
ve

ra
ge

 B
es

t
U

se
r

R
at

in
g

0 2 4 6 8 10
User Rating

0

2

4

6

8

10

N
N

 P
re

di
ct

io
n

In order to measure the performance of the system it is useful to

define an automatic error function E= ()() 21

0
21∑ =

− −N
t tt apN ,

where pt and at represent the model-predicted and actual price at
time t, respectively. Figure 6 shows user evaluations and
automatic error values for a large set of phenotypes. It is clear that
the user rating is not a simple function of E, the user assigns the
same rating for phenotypes with very different E values.

Figure 6. E vs user rating..

The system was tested with 30 random initial

conditions. In each run, the user evaluates the phenotypes for 5
generations. If the user reaches the optimal solution during this
training phase, that run is discarded and the system reset. If the
optimal solution is not found after 5 generations the user lets the
neural network predict his/her evaluations and evolve the
genotypes.

Figure 7 shows the average of best user rating and E as
a function of the number of generations. The number of distinct
training patterns ranged from 6 to 25 with a mean of 16.7. In
order to produce Figure 7a, we had the user rate the phenotypes
after the 5th generation, but we did not use those ratings neither to
train the neural network nor to use in evolutionary operations. It is
clear that the quality of the phenotypes continues to increase even
after the neural network replaced the user.

It is interesting to analyze the generalization
performance of the neural network. Figure 8 shows the neural
network predictions as a function of the user ratings. The blue
curve shows the histogram of the training patterns. The network is
trained on input patterns with user ratings between 0 and 8, and it
could successfully predict the optimal solution's score around 9.5.

8. CONCLUSION
We have shown with a simple financial markets example how
IEC can be used to perform agent-model inversion. When applied
to simple models and reasonably small parameter spaces that have

human-interpretable visualizations, IEC as a technique nicely
combines human expertise with evolutionary computation and
may improve the speed and accuracy of search in the fields of
model inversion and model design, particularly when goal
evaluation is multi-variate, complex, or qualitative. Although a
straight optimization algorithm such as a genetic algorithm (GA)
with a least-mean squares objective function does find a solution,
IEC enables the user to estimate models without having to define
a problem-specific, ad hoc objective function. One useful
extension to this work consists of using IEC to fit two or more
aggregate-level datasets simultaneously, thereby increasing the
plausibility of the discovered model. It was also shown that
adding modularity to the user selection process greatly enhances
the user’s ability to find a good solution. A machine learning
technique that learns the user’s selection preferences also helps
mitigate one of the biggest issues with IEC, user fatigue.

Figure 7. Top: Average best user rating as a function of
generation number. Bottom: E as a function of generation

number.

0 2 4 6 8 10
User Rating

0

2

4

6

E

1903

0 10 20 30 40 50
Number of Generations

0

0.5

1

1.5

2
A

ve
ra

ge
 B

es
t−

L
M

S

Figure 8. Neural net predicted rating vs user rating (black
dots). The line shows a histogram of training patterns.

9. REFERENCES
[1] Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. G. &

Taylor, P. (1997) Asset pricing under endogenous
expectations in an artificial stock market, in The Economy as
a Complex Evolving System II, eds. Arthur, W. B., Durlauf,
S. & Lane, D. (Santa Fe Institute Studies in the Sciences of
Complexity, Proceedings Volume XXVII, Addison-Wesley,
Reading, MA).

[2] Ball, P. (2002) Stock market shock explained. Physicists
model recent trading frenzy. Nature Science Update,
http://www.nature.com/nsu/020923/020923-18.html

[3] Banzhaf, W. (1997) Interactive evoution. In: Handbook of
Evolutionary Computation (T. Baeck, D. Fogel, and Z.
Michalewicz, eds), Ch. C2.10, pp. 1-5, Oxford University
Press.

[4] Bonabeau, E. (2002) Agent-based modeling: methods and
techniques for simulating human systems, Proc. Nat. Acad.
Sci. USA 99, 7280-7287

[5] Boschetti, F., Moresi, L. 2001. Interactive inversion in
geosciences. Geophysics 66, 1226-1234.

[6] Caldarelli, G., Marsili, M. & Zhang, Y.-C. (1997) A
prototype model of stock exchange. Europhys. Lett. 40, 479-
484

[7] Epstein J. M., Axtell R. L. (1996) Growing artificial
societies: social science from the bottom up (MIT Press,
Cambridge, MA).

[8] Dawkins. R. 1987. The Blind Watchmaker. W. W. Norton,
New York.

[9] Farmer, J.D. (1999) Physicists attempt to scale the ivory
towers of finance. Computing in Science and Engineering
(IEEE), November-December 1999, 26-39.

[10] Forrest, S. 1993. Genetic algorithms: Principles of adaptation
applied to computation. Science 261: 872-878.

[11] Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley
Longman Publishing.

[12] Hassoun, M.H. (1995), Fundamentals of Artificial Neural
Networks, The MIT Press, Cambridge, MA

[13] Haykin, S. (1999), Neural Networks: A Comprehensive
Foundation, Second Edition, Macmillan, New York.

[14] LeBaron, B. (2001) A builder's guide to agent-based
financial markets. Quantitative Finance 1, 254-261

[15] Levy, M., Levy, H. and Solomon, S. (2000). Microscopic
Simulation of Financial Markets: From Investor Behavior to
Market Phenomena. (Academic Press, San Diego, CA).

[16] Lux, T. & Marchesi, M. (1999). Scaling and criticality in a
stochastic multi-agent model of a financial market. Nature
397, 498-500

[17] Mantegna, R. & Stanley, H. E. (1999). An Introduction to
Econophysics, Cambridge University Press

[18] Muchnik, L. & Solomon, S. (2003). Statistical mechanics of
conventional traders may lead to non-conventional market
behavior. Physica Scripta T106, 41-47.

[19] Palmer, R. G., Arthur, W. B., Holland, J. H., Le Baron, B. &
Tayler, P. (1994) Artificial economic life: a simple model of
a stock market, Physica D 75, 264-274.

[20] Sims, K. 1991. Artificial evolution for computer graphics.
Computer Graphics 25: 319-328.

[21] Sims, K. 1992. Interactive evolution of dynamical systems.
Pages 171-178 in: Towards a Practice of Autonomous
Systems: Proceedings of the First European Conference on
Artificial Life (F. J. Varela & P. Bourgine, eds.), MIT Press,
Cambridge, MA.

[22] Sims, K. 1993. Interactive evolution of equations for
procedural models. Vis. Comput. 9: 446-476.

[23] Takagi, H. 2001. Interactive evolutionary computation:
fusion of the capabilities of EC optimization and human
evaluation. Proc. IEEE 89: 1275-1296.

[24] Wijns, C., Boschetti, F. & Moresi, L. 2003. Inversion in
geology by interactive evolutionary computation. Journal of
Structural Geology, in print.

1904

